MIT; VISIONS OF THE FUTURE He asks how the brain “creates its own selective pictures of the world” from different sensory input, which exist as “bits of electrical activity, excitable neurons.”

Views: 23
Get Embed Code
Susumu Tonegawa provides not only a history and overview of the Picower Institute, but a rundown of the latest insights about memory and cognition emerging from his and colleagues’ labs. Morgan Sheng has figured out how to visualize at high resolution the molecular architecture of neuronal synapses; Matthew Wilson can detect a pattern of firing neurons in the formation of spatial memories as rodents explore a new environment, and then watch these neurons firing in the same pattern as the animals sleep—suggesting a mechanism for consolidating memory; Mark Bear is delving into the molecular mechanism behind fragile X mental retardation, and exploring possibilities for pharmacological correction; Earl Miller’s work with monkeys indicates that learning may happen first in a more primitive area of the brain, monitored and then ‘approved’ by the brain’s executive branch, the prefrontal cortex. And Tonegawa has zeroed in on the genes responsible for specific kinds of memory circuits in the brain’s hippocampus. As for the future, Tonegawa calls for “new technology, based on totally new principles, which can analyze what’s going on in the brain at the level of a single synapse,” as well as new diagnostic and therapeutic methods for psychiatric and neurodegenerative diseases.

You need to be a member of Peacepink3 to add comments!

Join Peacepink3

Votes: 0
E-mail me when people leave their comments –