The picture above was uploaded to his gmail account. The moment I saw his picture, I instantly remembered corresponding with him. At that time he was in West Africa and I was very glad to have someone from that region of the world participating in our organization. He was requesting to be added to our Buddy List to which I replied, 'sure.' Then a month later for unexplained reasons, he wanted to deactivate his account. http://govsponsoredstalking.info/?p=2463
MKULTRA (13)
Snakes surrounded him in the forest. They were as long as crocodiles and as fat as whistle pigs.
“Don’t be afraid of them,” Johnny said.
What is he doing in my dream? Ti asked himself, perplexed in his dream.
“They are easy to kill.” The movie star in the vision said and begins to chop off their heads with a cutlass as swiftly and easily as a butcher in the market chopping off the heads of chickens.
“Here,” Johnny said turning to Ti and handing him the cutlass. “Kill them.”
The weapon shook in Ti’s hand and he could not move his feet; they seemed stuck to the spot where he stood. He was filled with terror at the size of the venomous creatures laying there lazily on the ground, as if sunbathing. Every inch of the forest ground was covered by the noxious animals that Ti was filled with horror at the thought of accidentally stepping on one of them, even though they looked to be asleep. They have been fed hate. He thought to himself. They have imbibed too much hatred and have become so enormous that they cannot move. He could not move either and stood glued to this cramped spot in the forest surrounded by creatures that filled him with terror.
***** *****
At exactly 7:11 in the morning, Ti opens his eyes from another of the nightmares that paralyze him with fear; even his bones shake from fear as he sits in bed. This apprehension dominates his spirit day and night. He is afraid to close his eyes at night because of the dark images that torture his sleep and is afraid to walk the streets during the day because he is a hunted animal. Well, he could stay in bed and not go anywhere but then he would starve. So like an animal operating on its instinct, he rises from his bed of torture to start a day he dreads.
Prompted by an inner force, he glances at the clock before exiting the door. It’s exactly 8:11. Funny, he thinks. You see, since the calamitous acts of 9111 when weapons were dropped from the sky on people down below by certain nefarious individuals, every time Ti happens to glance at the clock, the minute hand is always on the number 11. It’s as if someone does not want him to forget that venerable day for reasons he does not know.
A shadow trails him as he makes his way towards the apartments’ parking lot. When he looks back, he sees a young Hispanic man of about twenty walking rapidly trying to catch up with him. On turning around to face the nuisance, the trailing shadow freezes in his steps—hunching forward like a kangaroo— and with a half-opened mouth, stands gapping at Ti without uttering an English or Spanish word.
“Why are you following me or what do you want?” A normal person would have asked. But Ti does not have the capability of communicating with his fellow human beings anymore. He is no longer one of the people. He has been cast out and is now an insect—a firefly, captured in a closed bottle. There are just enough holes on the lid to keep him from not expiring.
The kangaroo hops away knowing he has fulfilled his role and might be paid some money for the anxiety caused to the fly.
As Ti approaches the parking lot, he sees two black guys sitting inside a small grey car parked next to his hunched, dilapidated white Honda. His car always gives him away. Everyone seems to know the peculiar car and its driver. He even saw it in an advertisement on T.V. one day. Yes, his exact car with the unique rust and dent in the same location on the rear of the passenger side. Driving the car was a young white man. When he first saw the advertisement, he thought he was being paranoid. That’s my car. He thought. But friends told him “We saw your car on T.V. It had the same rust and dent in the exact positions as your car.” Then he knew he was not paranoid. Perhaps someone wanted him to become paranoid.
One of the black men looks in his direction in a fortuitous way on nearing the car and the two pretend at continuing whatever casual conversation they were having before seeing him. Much like the Hispanic man, TI knows this is not an accidental encounter and they are not just sitting in the grey car having a casual conversation while waiting for a third party. They are here to fulfill their roles.
Ironically, he feels nothing, just a submissive acceptance of the fact that he is being shadowed by an assortment of animals.
Your will has been taken away from you. You have no will to feel or act. You are less than human.
“Monkey,” a voice whispers in his ears as he drives the car away from the parking lot. He has been hearing this voice for about three months now—a male, monotone voice hurling words at him like stones meant to maim his mind. He accelerates on the car flying through the first red light. His emotions and motions are controlled by these brutish words.
He parks his car under the sycamore tree in front of Mr. Brown’s house, his only patient on this day, and walks up the driveway to the entrance. There, he sees lying by the door a black bird, dead and hard as a rock. Beside it is a big, oblong-shaped green pill.
“Swallow your pill,” the monotone voice says.
He feels his anger crackling like a newly-lit charcoal fire and wants to pick up the dead bird and slam its pitiful body against the wall. But he hesitates knowing the behavior can be construed as abnormal by passersby. He can’t afford to lose control of his sanity otherwise he’d lose everything—his job, his life. The malevolent voice makes sure he is kept on edge all day long and is bent on driving him insane.
I might be going crazy on the inside but I won’t let anyone see me crazy on the outside.
*** **
“Mr. Brown, your breakfast is ready!” Ti screams at the 96-year old man he takes care of every Tuesday.
The old man picks at his food as if suspecting his health aide of trying to poison him.
“Why do you sleep all the time?” Mr. Brown asks Ti who is in the process of dozing off for the third time since he came to work. They are now sitting in the living room.
“I’ll get you fired,” his companion tweets in his head. He sees in his mind the picture of an incomplete face made up of a winking eye and a pair of lips twisted in such a way that they seemed to be mocking him.
Ti is unable to overcome the lethargy that engulfs his mind and body. Fumes of sleeping gas seem to seep into his nose and ears and every other organ with an opening; before he knows it, he is dozing off again. But all of a sudden, he finds himself standing up and walking, with a pillow in hand, to where the old man is sitting. The old man is being suffocated.
“No!”
He awakens from this erratic slumber, his heart beating fast as if he were about to have a heart attack. Unconsciously he turns his head in the direction of the patient. The old man is sitting as erect as Mount Kilimanjaro reading the Christian Monitor.
“I’ll make you do something you’ll regret. You’ll end up in jail.” The image taunts.
“What’s wrong? You o.k.?” Mr. Brown asks, concerned.
His head hurts from a burning sensation as if someone was poking at it with a hot iron.
Absent mindedly he looks at his watch and realizes it’s 5:11. His duties ended 11 minutes ago.
As he drives away from the sycamore tree, he hears a crashing noise resembling the sound of a tree falling on the roof of his car. Immediately, he feels his chest contracting and like so many times during this day, he feels like he is about to have a heart attack. From his rear view mirror he sees that the sycamore tree is still standing in front of the house and so is the roof of his car and the windshield. The noise is synthetic much like the words he hears.
“Ironmonger,” the synthetic voice replies in answer to his apprehension.
Four blocks from Mr. Brown’s house, he stops in front of the red light and notices a black truck parked close to the curb on the right— parked in a way that he could not help but notice it. Behind the steering wheel sits a tall white man. As Ti looks in his direction, the man bends his head as if searching for something. He, too, has fulfilled his role.
*****
Ti enters the mall at 6:11 and makes his way to one of those reclining, vibrating chairs. He opens a book to read but less than ten minutes later, a short, heavy-set black man with glasses slides stealthily, like a tiger owl in the dark, into the chair on his left.
He wants to scream out and ask “WHY?” But when he opens his mouth, not even the slightest “ah” is he able to utter. It’s as if his vocal cord no longer works. In fact, all the organs in his body seem to have shut down. He cannot feel or think. His brain is like an empty room. There is no bed to sleep on or a chair to sit on. All that is contained in the room is air and this begins to fill his brain. The air pressure in his brain builds up by the minute until it swells like a balloon ready to lift him off the chair into space.
*****
The traffic is heavy as Ti drives on the highway. The motorists behind and in front of him drive very close to each other— bumper to bumper— but they leave a big space between his car and theirs. No one is driving close to me. They know my license plate. They are avoiding me. He feels like a leper no one wants to come near.
“Do not lie with beasts!” He hears a preacher blare from the T.V. as soon as he opens the door to his apartment. Had he forgotten to turn it off or had someone else turned it on?
The preacher’s eyes seem to be scrutinizing his from the screen and he begins to feel uncomfortable. “Those who lie with dogs have fleas. “ The censurer continues in a voice that makes him feel like the culprit who lies with dogs. “I will make a covenant with my people and drive wild beasts from this land.” He is talking to me. He is one of them.
Overcome with fear, guilt, and shame, Ti grabs for the nearest object on the table beside him—Webster’s Collegiate Dictionary—and throws it at the T.V. They are everywhere. I can’t hide from their scrutinizing eyes. He sits, dejected, on the couch; his hands massaging his burning head. He tries to think but every time his mind focuses on a thought, pressure builds up slowly in his brain. He sees the image of a vacuum and hears the vile man say:
“I have vacuumed your brain. I have filled it with air.”
*****
Dogs surround him, barking furiously. He tries to escape from them but they watch him intently, moving whichever way he moves. When he sees an opening in the circle they have formed around him and tries to flee through it, one of the dogs jumps up aiming for his jugular.
The violence of the dream wakes him up. It’s dark outside. The red LED light of the radio clock on the table displays 9:11.
“We shall never forget 911,” his nemesis reminisces.
On the floor beside the couch, lying surreally side by side, is a pair of dissimilar objects—a feather and a blade. He does not know how they got there. They were not there when he had dropped on the couch like a fallen tree and dozed off.
Outside, underneath his apartment window, some of the neighborhood dogs have congregated and like the dogs in the dream from which he just awoke are barking furiously, urging him on.
“Die by your own hands or we’ll chase you into a hole like a rabbit!”
http://psicotronicoseoutros.planeta.zip.net
meddling strings pulled so tight as darkness envelops despairing light!
handlers stand impatiently outta sight.
cold hearted orders behind deadeyes.
nightmares exist where no crow flies.
embedded imagery the soul dies.
another butterfly dies tonight.
monarch programming by ancient rite.
nightmare screams echoe the halls.
young souls trapped in secret wards.
a monotone voice triggers evil words.
mind become two&sometimes thirds.
another butterfly dies tonight.
voices subtly whispering orders from within awakens mental disorders.
monsters projected in their heads.
torturous abuse by spiders web.
one eye obscures a different mind.
hidden switches click deep inside lies prevail behind whitewashed walls.
destroying minds in cattle stalls.
|=---------------------=[ The basics of Radio ]=-------------------------=| |=-----------------------------------------------------------------------=| |=------------------=[ shaun2k2 <shaun at rsc dot cx> ]=----------------=| 0 - Introduction 0.1 - Technical Terms 1 - Radio Basics 1.1 - Radio Waves 1.2 - Carrier 1.3 - (RF) Frequency Bands 1.4 - Wavelength 1.5 - Transmission 1.6 - Receiving 2 - AM Radio 2.1 - What is AM Radio? 2.2 - Modulation 2.3 - Demodulation 2.4 - Circuits 2.4.1 - Receivers 2.4.2 - Transmitters 3 - FM Radio 3.1 - What is FM radio? 3.2 - Modulation 3.3 - Demodulation 3.4 - Circuits 4 - Misc 4.1 - Pirate Radio 4.2 - Wireless Telephone Tapping 4.3 - Jamming 5 - Conclusion 6 - Bibliography --[ 0 - Introduction Ever since our discovery of radio, in around 1902, we have proceeded to utilise it for many different purposes -- from sending others short messages, to transmitting large and critical data sequences to other computer systems. As time has gone on, as useful a technology as radio is, it is barely noticed anymore. When most people think of 'radio', they picture a small black device sitting in their car, which they will use to listen to their local radio stations during car journeys. On the other hand, very few people realise the true usefullness of radio, often forgetting that their cellphones, televisions, satellite TV and alarm systems all too use radio to complete their task on a very regular medium -- radio is not just that boring old thing gathering dust in the corner. This article is divided up into four parts. The first part describes the basic theory of radio, and examples to illustrate some of the common day uses of it. In parts two and three, AM and FM radio details are outlined showing various different circuits to illustrate how these principles can be applied to real-life, functioning circuits. Section four is a misc. section, presenting some miscellaneous interesting points. Some electronics knowledge is useful in radio, though not totally necessary. Most circuits presented here are quite rough, and can be greatly improved upon in many ways. ----[ 0.1 - Technical Terms Below is a description of technical terms used throughout the article: RF -- Any frequency within the radio spectrum, which can be used by to transmit and receive radio signals. Modulation -- A technique used to package data into a radio signal which is of use to the destination radio receiver. AM -- Amplitude Modulation. This involves shifting the amplitude of a radio signal's carrier very slightly in sympathy with a modulating signal. FM -- Frequency Modulation. FM modulation involves shifting the frequency of a radio wave's carrier very slightly in sympathy with a modulating signal. Receiver -- Any device which is capable of receiving radio signals sent by a radio transmitter. Transmitter -- A device which can transmit radio waves into the surrounding environment. Aerial -- A medium to large piece of wire which is used by either a radio transmitter or receiver to propagate or detect an incoming radio signal. In a radio receiver or transmitter, an aerial acts as one plate of a capacitor, whilst the other plate is taken place by the Earth. Antenna -- See aerial. Wireless -- Refers to any technology which communicates data without the need for a wired connection. Most wireless devices, such as cell phones, televisions, and others use radio, but several do use technologies such as infrared, which is not covered here. Radio wave -- A radio wave is an 'electromagnetic' wave, most commonly containing data to be received by a remote radio receiver. Oscillator -- Refers to an electronic circuit which 'oscillates', or 'vibrates', to complete a certain task. Oscillators are used in radio to transmit radio waves at a given frequency -- the rate at which the oscillator oscillates is the RF (see RF) at which the wave is transmitted. Common oscillator circuits, also used in this paper, are LC oscillator circuits, and crystal-controlled oscillators. Crystal-controlled oscillator -- An oscillator circuit whos oscillation frequency is controlled by a 'crystal'. See oscillator. LCoscillator -- An oscillator consisting of a capacitor and an inductor, whos frequency of oscillation is controlled directly by the capacitor, which is usually variable. See oscillator. Capacitor -- Device which stores current as an electrical field. Broadcast -- A term used to describe transmitting radio waves into the atmosphere. Wavelength -- The physical distance between two waves on the same frequency, transmitted successively. Bands -- Frequency Bands are a range of frequencies used interchangeably or commonly for the same type of technology. For example, televisions often use the VHF band. Frequency -- Number of cycles per seconds. Frequency can be used to describe how often an oscillator oscillates. Sidebands -- When modulation of a carrier is applied, two extra bands are generated, both slightly higher and lower than the carrier frequency, equating from the 'sum and difference' of the carrier and audio frequency. These two bands appear at either end of the RF carrier, hence the term 'sidebands'. --[ 1 - Radio Basics ----[ 1.1 - Radio Waves Radio waves, otherwise referred to as 'radio signals', are simply electromagnetic waves. Radio waves are transmitted by devices called 'radio transmitters' or 'transmitters' for short. Despite our wide and many uses for radio waves as a whole, we actually known very little about 'radio'. We do know, however, that radio waves are a form of energy, which act exactly like they have been propagated as any other type of wave we know of. For example, an audio wave. Radio waves are made up of three things; an electric field, a direction, and a magnetic field. Despite our underlying ignorance of radio and its properties, we can predict and use its properties to our advantage to undergo a wide variety of different tasks -- and will probably do so for a long time to come. ----[ 1.2 - Carrier An 'RF carrier' can be thought of as the part of the radio wave which can be modulated to 'carry' a data signal. An analogy to help with understanding this is to think of turning on a flashlight and pointing it towards a wall. The light which is seen on the wall is the 'carrier'. Before and without modulation, the carrier of a radio wave contains no data, and just contains peaks of an RF voltage. peak voltage ||\\ ///\ //\\ || \\ // \\ // \\ || \\\/ \\\/ \\ RF carrier Because sending radio waves with a carrier containing no data would be almost useless, a carrier is 'modulated' to contain data. There are various modulation schemes in wide use, but the two most common schemes are AM (Amplitude Modulation) and FM (Frequency Modulation). These are discussed later. ----[ 1.3 - (RF) Frequency Bands As we can gather from listening to a variety of radio stations, different forms of technology use an entirely different 'band' of radio frequencies on which to send and receive their radio signals. The entire range in which radio signals are transmitted extends from around 30KHz, up to about 30GHz. This whole range of available RFs (Radio Frequencies) is known as the 'radio spectrum'. The radio spectrum's range of frequencies, and their concurrent uses are shown in the below table. +-------------------+----------------------------+---------------------+ | Frequency | Uses | Name | +-------------------+----------------------------+---------------------+ | 30KHz-300KHz | Long-wave radio, useful | Low Frequency (L.F) | | | for long distance | | | | communications | | +-------------------+----------------------------+---------------------+ | 300KHz-3MHz | Medium wave, local radio | Medium Freq (M.F) | | | distant radio stations | | +-------------------+----------------------------+---------------------+ | 3MHz-30MHz | Short wave radio | High (H.F) | | | Communications | | | | Amateur radio | | +-------------------+----------------------------+---------------------+ | 30MHz-300MHz | FM Radio | Very High (V.H.F) | | | Police radio | | | | Meteorology Comms | | +-------------------+----------------------------+---------------------+ | 300MHz-3GHz | Air Traffic Control | Ultra High (U.H.F) | | | TV | | +-------------------+----------------------------+---------------------+ | 3GHz-30GHz | Radar Comms | Microwaves (S.H.F) | | | Satellites | | | | Telecommunications (TV & | | | | telephone) | | +-------------------+----------------------------+---------------------+ Since certain frequency bands are used to accomodate important communications, such as the VHF band, it became illegal to transmit radio waves at certain frequencies without a license. It was made so because transmission of radio signals at important frequencies could interrupt critical communication, such as communication between police officers with their radio transmitter devices. All frequencies within the radio spectrum are invisible to humans. Light frequencies which are visible to humans, i.e frequencies which are present in the light spectrum, operate at *much* lower frequencies. ----[ 1.4 - Wavelength Wavelength is the physical distance between a peak in one radio wave, to the peak in another radio wave transmitted successively -- on the same RF. As a general analogy, the wavelength can be thought of as the distance that the peak in a given wave will have travelled in the space of time for one cycle. This can be calculated using the below simple formula. |\ = V / F * |\ = lamda V = Velocity F = Frequency Using this formula, the wavelength for an example scenario can be calculated, when the RF is 27MHz. The speed of light is 300 million meters/second, which is therefore the velocity of the electromagnetic wave. |\ = 300,000,000 / 27,000,000 = 11.11r Looking at the above calculation, what can be gained? It seems that the wavelength for waves transmitted in the example scenario is 11.11 (recurring) meters, so from this, it can be gathered that a peak in a particular radio wave will have travelled 11.11r meters in the time it took for one oscillation of the transmitting oscillator. But how can we know how long this oscillation period takes? We can calculate this using the formula '1 / f'. 1 / 27,000,000 = 0.0000000370r This means that within the miniscule time frame of 0.0000000370 (recurring) seconds, the peak within the radio wave should have travelled approximately 11.11 (recurring) meters. Wavelength might seem quite a useless thing to calculate on its own, but it comes in very useful when it comes to calculating suitable aerial lengths for both radio transmitters and radio receivers. As a rule of thumb, an ideal length for a radio aerial is around 1/2 of the signals wavelength. This can be calculated very easily. 11.11 / 2 = 5.555 (roughly) From this calculation, we can gain the knowledge that a near ideal radio transmitter/receiver aerial can be constructed to be of around 5.5 meters. Exact precision is not generally critical to the overall operation of the radio transmitter/receiver. For example, where portability of equipment is more of a concern than great efficiency, 1/4, 1/8 or even 1/16 of the wavelength in meters is often used for the length of the radio aerial. 11.11 / 4 = 2.7775 11.11 / 8 = 1.38875 11.11 / 16 = 0.694375 From this little experiment we can see that we can turn a length which is considerably out of question due to portability desires, into a length which is much more suitable, yet efficiency is not affected too much. This technique is very commonly employed to calculate sensible lengths for radio aerials. However, other techniques are also employed, especially in the case of satillite TV. Notice how TV satillite dishes house tiny holes in the body of the dish? These holes are specially sized to ensure that radio waves with wavelengths less than that associated with the desired RFs (3GHz-30GHz) do not create an electrical current in the aerial wire, as suitable radio waves do. Holes based upon the same principle can also be found when looking inside a microwave oven. ----[ 1.5 - Transmission Perhaps one of the most difficult concepts to grasp in radio is how radio waves are actually broadcast into the environment. As touched upon previously, radio waves are transmitted using oscillators in electronic circuits, and the rate at which the oscillator oscillates is the frequency at which the radio waves are transmitted. As an example, we will focus on using an LC tuned oscillator circuit in the radio transmitter circuit. LC oscillators are made up of an inductor (L), and a capacitor (C). If we consider how a capacitor stores current, we can come up with the conclusion that it is stored as an electric field between two plates -- these two plates make up the capacitor. During one oscillation (also known as a 'cycle') of the LC tuned circuit, all available current is stored first in the capacitor as an electric field, and then as a magnetic field associated with the LC circuit's inductor. After a *very* short time period (1/f), the magnetic field is turned back into an electrical current, and begins to recharge the capacitor again. Because the inductor's magnetic field is beginning to change back into electrical charge, the inductor turns another electrical field into a magnetic field in order to counter-act the change. This continuous cycle of quick changes keeps the current in the LC circuit flowing in the same direction, driven by the current stored in the inductor. When the inductor's charge eventually becomes zero, the capacitor becomes charged again, but with the opposite polarity. After each oscillation (cycle), energy loss has occured, but not all of the energy loss can be accounted for as energy lost as heat from the inductor's coil. Thus, we can gather that some energy has been 'leaked' from between the capacitor's plates, as electromagnetic energy -- radio waves. If we consider this, we can conclude that the further apart the plates in the capacitor are, the more energy is broadcast ('leaked') as radio waves. This must mean that if we have a capacitor with plates spaced 1 meter apart, more energy will be broadcast as radio waves than if the capacitor had plates spaced a very small distant apart. By thinking even deeper, we can conclude that to maximise 'leakage' of radio energy, a capacitor is needed in the LC tuned oscillator circuit with plates spaced at quite a distance apart. It just so happens that for this task, to maximise broadcast of radio waves, the world's largest plate can be used to take the place of one plate of the capacitor -- the Earth! The other capacitor plate needs just be a suitably lengthed piece of wire, which is an equally common sight -- this piece of wire is known as an 'aerial'! In real-world radio transmitters, oscillator circuits are used to make a small current 'oscillate' in an aerial wire. Because of the constant change of energy form in the oscillator circuit, the current oscillating in the length of the wire becomes electromagnetic and is radiated as radio energy. Back to the length of the aerial in relation to wavelength; this is where the length calculated earlier comes in handy. From the knowledge gained here, we can assume an adapted LC oscillator circuit as below. Capacitor Inductor ________________ | ) | ) --- )____________ Aerial --- ) | ) |________________) As a concept, using the adapted LC tuned oscillator circuit above, the transmission of radio waves can be thought of like this; radio waves are generated due to the propagation of an electric current in an aerial wire. It is, as we have learnt, the 'leakage' of electromagnetic energy from between the two plates of the capacitor which causes broadcasting of radio waves. As oscillations occur in our LC tuned circuit, all available energy is stored in the capacitor, followed by energy (electrical current) not leaked as electromagnetic waves being fed into the inductor. This whole process measures one oscillation, and once one oscillation is over, the whole process repeats itself again, and each time energy is being lost as radio waves from the acting 'capacitor' (aerial and Earth). Therefore, it is the rate at which the LC circuit is oscillating (the 'frequency') at that determines the frequency at which the radio waves are broadcast at -- thus determining the RF of the radio signals. ----[ 1.6 - Receiving The concept of receiving radio signals is based upon almost the opposite of the concepts of transmitting radio waves. In similarity to radio transmitters, radio receivers also use an aerial, but for a totally different purpose; for detecting the radio signals in the environment. As described previously, radio waves are a form of energy, propagated as electromagnetic waves through the air. Thus, when radio signals transmitted by nearby radio transmitters pass the aerial of the receiver, a *tiny* RF alternating current is generated in the aerial wire. When a signal becomes present in the aerial wire, 'wanted' radio frequencies are 'selected' from the assortment of RF currents in the aerial, using a 'tuned circuit'. As an example, we'll focus on the LC tuned circuit as in the previous section, due to the simplicity of this circuit. RF current of the 'wanted' frequency can be selected from amongst the other RFs by use of an LC tuned circuit, which is set to resonate at the frequency of the 'wanted' radio frequency. This selection is done because the LC tuned circuit has low impedance at any frequencies other than the 'wanted' frequency. Frequencies other than the 'wanted' frequency are prevented from passing through the circuit because they are 'shorted out' due to low impedance of the LC circuit at any other frequency than the resonant frequency (the frequency of the 'wanted' signals). Following the selection of correct radio frequencies from the other RF signals, the radio receiver will usually amplify the signal, ready for demodulating. The technique which is adapted by the receiver for demodulating the radio signal into the modulating signal is totally dependant on the type of modulation being used in the received radio wave. In the case of an AM radio receiver, a selected signal will be 'rectified' and thus demodulated, using a low-drop germanium diode. This process basically turns the alternating RF current back into a direct DC current, which represents the power strength of the AM signal. Next, the RF component is generally removed by using a capacitor. The output product of this process is a recovered modulating signal which can be fed to a pair of high impedance headphones. The diagram below represents how the selected RF current is rectified by the diode. ||\\ //\\ ----------------------|>|--------------- ||\\ //\\ || \\|| \\ || \\|| \\ \/\/\/\/\/\/ AM Modulated Carrier diode Modulating signal (RF carrier present) After being rectified by the diode, the AM radio signal is still not suitable to be fed to an audio output, as the RF carrier is still present. The RF carrier can be removed by using a single capacitor. | | ||\\ //\\ ------------------------| |--------------------- /\ /\ || \\|| \\ | | / \/ \ Modulating signal capacitor Modulating signal (RF carrier removed) The output of the capacitor is a recovered modulating audio waveform which is suitable for passing to an audio output device, such as a set of headphones with a high impedance. This technique is likely to be the simplest way to create an AM radio receiver, commonly known as the 'crystal set', used by the mass in the 1920s. Other receivers are more often used to produce a higher quality of audio output, such as TRFs (Tuned Radio Receivers) and Superhetrodyne receivers. The whole system model of a radio receiver at its most basic level can be thought of as the below diagram. Modulated Radio Signal (electric current generated in aerial wire by radio wave) | \|/ Signal amplified | \|/ Signal demodulated | \|/ Modulating signal Although the techniques and components needed to achieve each step of the diagram are different, most receivers stick to this sort of system. Other types of receivers and their circuits are discussed more indeph in the section they are related to. --[ 2 - AM Radio ----[ 2.1 - What is AM Radio? AM Radio refers to any form of technology which makes use of Amplitude Modulation to modulate the 'carrier' with information. To package a radio wave with often complex signals, the carrier of a radio wave is shifted in power very slightly in sympathy with a modulating audio or data signal. Next to morse code, AM is one of the simplest forms of modulation, and with this, comes its disadvantages. ----[ 2.2 - Modulation AM Modulation involves nothing more than shifting the power of a radio wave's carrier by tiny amounts, in sympathy with a modulating signal. Amplitude, as you probably already knew, is just another word for 'power'. The simplicity of AM modulation can be demonstrated with a simple diagram like the one below. ||\\ ///\ //\\ || \\ // \\ // \\ ---> \ /\ / ---> \\ \\ || \\\/ \\\/ \\ \/ \/ \\ ///\\ \\// \\ RF Carrier Modulating signal AM signal As you can hopefully make out from the diagrams, whenever the modulating signal (the signal which we are modulating) increases in voltage, the amplitude (power) of the RF carrier is increased in sympathy with the modulating signal. When the voltage of the modulating signal declines in voltage, the opposite of above happens. After AM modulating the carrier, the signal has usually twice the 'bandwidth' of the original modulating signal. ----[ 2.3 - Demodulation When an AM designed radio receives a radio wave, as previously noted, a small RF alternating current is generated in the aerial wire. Because of the AM modulation of the carrier applied by the sending transmitter, the voltages in the carrier are larger and smaller than each other, but in equal and opposite amounts. As a result, to recover the modulating signal, either the positive or the negative part of the modulated signal must be removed. In the simplest AM radio receivers, the modulated signal can be 'rectified' by making use of a single germanium low-drop diode. \\/\/\/\/\ \\ /// // ---------------------|>|----------------- \\ /// // \\// \\/ \\// \\// AM radio signal diode Modulating signal Here, part of the carrier has been removed, resulting in recovery, or 'rectification' of the modulating signal. Because the carrier frequency (the RF of the radio wave) is usually significantly greater than the modulating frequency, the RF carrier can be removed from the resultant modulating signal, using a simple capacitor. \\ // | | \\ /// // ----------------| |---------------- \ /\ / \\// \\// | | \/ \/ Modulating signal capacitor Modulating signal (with RF carrier) (without RF carrier) By exposing the rectified signal to a capacitor, the audio signal (or otherwise data signal) is smoothed, producing a higher quality of audible output. At this point, the modulating signal is more or less recovered. Although this technique of AM demodulation can be made to work to a satisfactory level, the vast majority of commercial radio receivers now adopt a design known as 'superhet', which I will explain briefly here. Superhet receivers are based upon the principle of 'mixing' two signals to produce an intermediate frequency. The diagram illustrates a superhet receivers operation. Carrier in ---> Tuned circuit ---> Mixer ---> IF amplifier ---> Detector (selects correct RF) | | | | | | Local oscillator Audio Amp | | +--+ | | +--+ \__/ As we can see, superhet demodulation is significantly more complex than 'rectification'. Superhet receiver systems, like the above system diagram, works basically as follows. First, an RF alternating current becomes present in the circuit, because of the electromagnetic activity around the aerial. Signals of the correct radio frequency are selected via a tuned circuit, and inputted into one input pin of the 'mixer'. In the meantime, the other input of the mixer is occupied by the 'local oscillator', which is designed to be oscillating at a frequency just lower than the inputted radio frequency. The output of the mixer is known as the 'Intermediate Frequency' (IF), which is the difference between the local oscillator frequency, and the frequency of the received AM radio signal. Next, the 'IF' is amplified, and passed to an 'envelope detector'. The output of the envelope detector is the modulating audio signal (an AF -- Audio Frequency), which is in turn amplified, and outputted to the user via a loudspeaker or other audio output device. Since the local oscillator is almost always set to oscillate at a frequency of approximately 465KHz *below* the frequency of the carrier input, the output of the mixer will always be a 'carrier' of 465KHz -- which still carries the modulated information. After the signal is amplified by the IF amplifier(s) (there can be more than one IF amplifier), the signal is now demodulated by the detector -- which is often just a single diode. As mentioned above, the modulating signal recovered by the system can be fed to an amplifier, followed by an audio output device. As well as producing a higher quality of audio signal, superhet receivers also eliminate the need to be able to tune multiple tuned circuits in a TRF (Tuned Radio Receiver). TRF designs become awkward when it comes to tuning them into different radio frequencies because of the many tuned circuits needed -- superhets overcome this problem as they always 'know' what the collector load will be -- a 465KHz signal. Superhet designs can also be adapted to work with FM radio signals, assuming the 'detector' is changed to a suitable detector for FM signals (i.e phase detector). ----[ 2.4 - Circuits Since radio technology is a frequently discussed topic across the Internet, many radio circuit design implementations are readily available, ranging from very simple circuits, to quite complex ones. Here I present some radio related circuits which most people with a bit of electronics knowledge and the right components can build. ------[ 2.4.1 - Receivers Discussed above was the historic 'crystal set' radio receiver, which allows anyone with a long enough aerial wire and a few components to listen to AM radio bands. Below is the basic crystal set radio receiver circuit, which is very easy to construct. Aerial Wire D1 * | Q1 | ____|>|__________________ |_____________|/ | | | |\ | | _______|_____ | | | ( | | | | ( L1 --- C1 * | C2 --- 0 high impedance ( --- | --- 0 headphones ( | | | | (_____________| | | | | | | | |_______________^____________|__________| | | (not joined) |_______________| | GND - C1 should be a variable capacitor to allow the station to tune into other frequency bands. - D1 should be a low-drop germanium diode -- non-germanium diodes won't work. From previous discussion, we can figure out that the above 'crystal set' AM radio receiver works as follows; incoming radio waves generate a tiny alternating current in the aerial wire, from which 'wanted' radio frequencies are selected, by the tuned LC circuit. Selected current passes through a diode, which 'rectifies' the signals, thus demodulating them. Before the diode, there is a simple transistor, which amplifies the 'wanted' frequency. The only reason for this is to make the quality of sound slightly better. Any remaining RF components are removed using a single capacitor -- this consequently has the effect of smoothing out the signal. The product audio signal is passed to a set of headphones -- these *must* be high-impedance, or nothing audible sounds on the headphones. As was noted earlier, this type of receiver was used frequently in the 1920s, and gave even newbie electronic enthusiasts of that time the opportunity to build something that would be considered very useful at that time. To make decent use of the 'crystal set' circuit, around 60-70 turns of wire around a rod of ferrious metal would create a good aerial. Designs like above are never used in commercial radio receivers anymore. Excluding superhet receivers, TRFs are occasionally used to produce low quality radio receivers. Below is a simple TRF receiver schematic. Aerial | C5* C6 +9V | ________________________________________ | | | | ) | | | --- --- ) LC2 |-| | | --- --- ) __| | | | |____|_______) | |_| | | | | | C8 --- C1 | | D1 C7 | |___| |____0 --- _|_ Q1_____________|>|________| |_|_|/ | | 0 LC1 | R1 | | / | | | |\ Q2 _________|__ |_| __|/ | | High impedance | ) | | |\_____ | | headphones | ) | | | | | | ) | | | | | --- C2 * )___| |__|_ | | | --- ) | | | | | | | ) C3 | | | | |___________) | | C4 | | | |_____ | | | | | R4 |-| R6 |-| R2 |-| R3 |-| --- | | | | | | | | --- |_| |_| |_| |_| | | | ____|______|____|_________ |___________| 0V - C2 should be a variable capacitor - C5 and C6 should be variable capacitors - Resistors of sensible values should suffice - Capacitors of sensible values should suffice As in the 'crystal set' receiver, when a radio signal is 'picked up' by the aerial, the proper frequency is selected using the LC tuned circuit. The signal is passed to a transistor amplifier. However, this time, the transistor amplifier has a 'tuned collector load', because of the tuned LC circuit (LC2) at the collector leg of the transistor. Next, the signal is rectified, stored in a few capacitors until enough current has collected, and is eventually fed to the user with the high impedance headphones. The use of the tuned collector load at the transistor causes for the receiver to be more precise, amplifying only the signals which are at the frequency of LC2's resonant frequency. As expected, this causes for a higher quality of audio signal to be fed into the users headphones, making this a much better radio receiver. A few things can be done to improve the above receiver, such as adding yet more tuned amplifiers, and perhaps adding a few more resistors and capacitors for safety and efficiency purposes. ------[ 2.4.2 - Transmitters All that we really need to do when designing a simple radio transmitter is keep in mind that we require an oscillator -- either tuned or crystal controlled -- and a series of amplifier circuits which boost our signal. After these stages, all that is left is to make the signals oscillate in the aerial wire. Below is a simple radio transmitter schematic. Aerial | | ___________________________________________________________________| | | | | | | | | | | | | | L1 ) | | | L3 | | ) R3 |-| C3 | |__ ) |-| R1 Crystal ) | | --- | | ) | |_________|_____________) |_| --- | | C5) |_| ||| | | | | --- ) | |_______| |_______|_AM ___|_______|/ --- | | / | | Modulator |\___|___| |__________| |________|/ C2 Q2 | | | | | |\ Q1 (PNP) | ) | C1 | --- ) | |-| C4 --- ) M | | R4 | L2 ) | |_| | | | | | | | | | | |_______________________|______________________________________|____| - TR2 is a PNP transistor - M is a microphone This circuit works by oscillating at the frequency controlled by the crystal (27MHz would be legal in the UK), amplifying the signal with tuned collector loads at the transistor (TR1), and then by radiating the signal off as radio waves by oscillating the signal in the aerial wire. Amplitude modulation is added to the signal by varying the gain of the transistor driver, by connecting it to the output of a microphone. The above circuit is quite inefficient, and is likely to produce low quality signals, but it can be used as a starting point to building a simple AM radio transmitter. It's probably illegal to operate the above circuit on frequencies requiring a license, so some countries *require* the circuit to be crystal controlled on a 'model radio' RF. One improvement to be made on the schematic is to amplify the output of the microphone before feeding it to the transistor driver. Possible devices which could apply the AM modulation are audio amplifiers, or even op-amps. An audio amp following the oscillator would produce a higher quality, stronger signal, but would also provide power gain (i.e amplitude gain), in sympathy with the audio signal produced by the microphone. This gain of amplitude due to the audio amp has essentially applied Amplitude Modulation of the carrier signal, because the power of the signal has been altered according to the inputted audio signal (at the microphone). An ordinary op-amp could be used in a similar way, but by substituting the non-inverting input pin with a suitable power supply. Essentially, this would cause for an outputted gain from the op-amp, according to the audio signal, because the two inputs to the op-amp are compared, as such. --[ 3 - FM Radio ----[ 3.1 - What is FM radio? FM radio just means any form of technology which makes use of radio with FM modulated signals. To modulate a radio wave's carrier with information, FM transmitters shift the frequency of the carrier very slightly, to be in sympathy with a modulating signal. ----[ 3.2 - Modulation FM modulation consists of little more than shifting a radio wave's carrier frequency very slightly in sympathy with a modulating signal's frequency. Modulation of an example audio signal is shown in the figures below. ||\\ ///\ //\\ || \\ // \\ // \\ ---> \ /\ / ---> ||\\ /\\ // || \\\/ \\\/ \\ \/ \/ ||\\ //\\ // ||\\// \\// RF Carrier Modulating signal FM signal The diagrams show that when the frequency of the modulating signal increases, so does the given carrier frequency, and the opposite when the modulating signal's frequency decreases. This is shown in the FM signal diagram by the bands being spaced widely apart when the modulating signal frequency is increasing, and more closely together when the modulating signal's frequency is decreasing. ----[ 3.3 - Demodulation When an FM modulated carrier signal is detected by the receiver's aerial wire, in order to recover the modulating signal, the FM modulation must be reversed. Most modern FM radio receivers use a circuit called the 'phase-locked loop', which is able to recover FM modulated radio signals by use of a VCO (Voltage Controlled Oscillator), and a 'phase detector'. Below is the system diagram of a PLL suitable for use in FM radio receivers. FM signal in -------------> Phase --------------- Detector | | | | | | | | | VCO | |__________________| | | | | | Modulating signal out The above PLL is able to recover the modulating signal by having one input to a phase detector as the modulated carrier, and the other input as a VCO oscillating at the frequency of the RF carrier. The phase detector 'compares' the two frequencies, and outputs a low-power voltage relative to the difference between the two 'phases', or frequencies. In essence, the outputted voltage will be relative to the frequency by which the carrier's frequency was shifted during modulation by the transmitter. Therefore, the output of the PLL, known as the 'phase error', is the recovered modulating signal. In addition to being outputted from the small system, the voltage is also given to the VCO as 'feedback', which it uses to 'track' the modulation. Acting upon the feedback received, the frequency of oscillation is altered accordingly, and the process is repeated as necessary. In the past, less efficient and reliable circuits were used to demodulate FM radio signals, such as the 'ratio detector'. Although the 'ratio detector' is less sophisticated than PLL methods, a functioning ratio detector circuit is actually a little more complex than PLLs. It should be noted that superhet receivers, touched upon a little earlier, can also be used as FM radio receivers, but their 'detectors' are different to that of an AM superhet -- for example, a PLL circuit or ratio detector discussed here could be used in conjunction with a superhet receiver to make an FM radio. This is the method which is actually adopted by most commercial radio receiver manufacturers. ----[ 3.4 - Circuits ------[ 3.4.1 - Transmitters The same general principles apply to FM radio transmitters as they do to AM radio transmitters, except that information must be modulated in a different way. In AM radio transmitters, the carrier frequency is more or less always constant. However, in FM transmitters, the whole principle is to alter the carrier frequency in small amounts. This means that a tuned oscillator circuit is not appropriate, because we need to alter the frequency accordingly, not transmit at one static frequency. The method used to overcome this problem is discussed a little later. A simple FM transmitter schematic diagram is presented below. Aerial | | | ____________________________________________________________________| | | | | | | | | | | | ) | ) |-| --- C3 | ) | R1 L1 ) R3 | | --- |_ C4 ) |-| ) |_| | | | ) | | ) | | | --- | |_| | Crystal | C2 | | | --- | L2 |_______________|||_____________|___________| |___|____|____|/ | | | / | | |\___|___| |____________| |_____________|/ | | | | |\ Q1 Q2 | | | | | C1 | | M |-| | | | | R2 | | |_| | | | | |______________________________|_____________________________________| When audio signals are produced by the microphone, current carrying audio frequencies are amlified, and are used to modulate the radio wave. Since the microphone does this all for us, there is no need to use modulation modules, ICs, or other technology. In situations where an elecret microphone is not available to do the modulation for us, a varactor diode can be used to vary the capacitance in an oscillator circuit, depending on the amplitude of a modulating signal. This varies the oscillation frequency of the oscillator circuit, thus producing FM modulation. --[ 4 - Misc ----[ 4.1 - Pirate Radio Pirate Radio stations are simply just radio stations ran by individuals who are not licensed amateur radio enthusiasts. Although radio is actually a natural resource, it has been illegal for a significant amount of time in some countries to transmit radio waves on certain frequencies. Although transmitting radio signals on certain frequencies (around 27MHz) is legal in places like the UK, strict FCC regulations kick in, almost limiting the threshold to useless. Because of this limitation, radio enthusiasts all around the globe see fit to set up pirate radio stations, which they use for their enjoyment, playing their favourite music tracks to the 'public', and for a breeding ground for aspiring DJs. Some 'pirate radio' stations keep within the FCC terms, by transmitting at low-power. These types of stations are often referred to as 'free radio', or 'micropower stations'. The legality of pirate radio stations is questionable, but varies from country to country. In some European Countries, you can be arrested for just owning an unregistered transmitter. In Ireland, prosecution rarely takes place if registered radio stations are not affected, but it is still illegal. The US allows transmission of radio signals at *microscopic* power, making the limitations almost useless for unlicensed radio enthusiasts, thus causing them to resort to pirate radio. Contrary to popular belief, setting up a pirate radio station is not necessarily a difficult task. At the minimum, someone wanting to setup a pirate radio station would need the following pieces of equipment: - Stereos, CD Players, Microphones, etc. - Audio Amp - Audio Mixer - Transmitter - Aerial Stations using only the above equipment can sometimes sound quite crude, and might interfere with other legal radio stations. To avoid this, a 'compressor' can be used, which also limits the noise created by sudden loud noises in the background. Although any of the example transmitters in this article probably wouldn't be sufficient enough to transmit music audio signals over the air, but they could be used as a starting point to building your own, more efficient kit. Additionally, FM and AM radio kits can be purchased, which anyone with a soldering iron can build. The length and height of the antenna depends entirely on how far the radio signals need to be transmitted. By reading the previous sections, some information on getting a correctly sized aerial can be gained. For example, a quick and dirty aerial for an AM pirate radio station could be around 15-20 feet tall. To avoid being busted, it is probably a good idea to stay within the legal power limits. Otherwise, a Direction Finding device used by the authorities could easily track down the exact location of the transmitter. ----[ 4.2 - Wireless Telephone Tapping 'Beige boxing' has long been the easiest and most exploited way to tap telephones, interrupt on neighbours conversations, and use enemies phone lines to make long distance calls to your friend in Australia. However, since beige boxing requires the phreak to lurk around like a ninja, a safer method can be used, which doesn't require you to be physically close to the target phone line. As expected, audio signals on a target phone line can be transmitted as radio signals at an arbitrary frequency, and be received by any phreak with an FM radio receiver. Although this concept is not new, it serves as an interesting and useful project for radio newbies to try out. Below is a simple FM phone bug transmitter circuit. __________________________________________________________ | | | | | | IN (green) ___.___|_______ |-| | | | | | | | | /\ LED | |_| | | --- | | |___| | op-amp | | | C1 | | | | |---|\ | | | |__________|/ ____| >------- Aerial | IN (red) _____|___| |\ _____|___|/ | | | | | | | | | | | | | OUT (green) __| | ( | | | /\ ( | /\ varactor | --- ( | --- | | ( | | | OUT (red) ________|____________________|_____|___|__________________________| - inductor should be about 8 turns of wire - aerial should be about 5 inch long By interchanging the varator with a crystal, or by using a variable capacitor, the frequency band on which the bug transmits line activity could be changed accordingly. The varactor making up part of the oscillator circuit is intended to alter the frequency of oscillation, depending on the audio signal inputted from the green wire of the telephone line. The varactor diode can be thought of as an electrically variable capacitor, which in this case alters its capacitance in sympathy with the audio frequency on the telephone line -- causing for change of oscillation frequency, and thus frequency modulation. The following op-amp provides additional strength to the signal, in an attempt to avoid a weak, unreliable signal. For user-friendly purposes, the LED connecting to the red wire of the line pair should illuminate when a signal is present on the line. The above circuit can be modified to be made more efficient, and a longer aerial is an obvious way of lengthening the range of transmission. If a phreak was to contruct and use a device like this, all they would need is an FM radio to tune into the correct frequency. There are much better designs than the minimalistic one above -- if a practical FM telephone bug is required, many plans are available. ----[ 4.3 - Jamming Technically, all it takes to carry out 'radio jamming' is to transmit noise at a desired frequency. For example, if a person in the UK were to transmit RF noise at 30MHz+, police radio communications could possibly disrupted. Although the principles are mostly the same, there are several different types of jamming. - modulated jamming This consists of mixing different types of modulation, and transmitting the results at a desired radio frequency. This is designed to make receiving legimate radio signals hard or next to impossible. - CW (continuous wave) CW jamming only involves transmitting a consistant carrier frequency once tuned into a RF frequency/band you want to jam. This again makes receiving desired radio signals particuarly hard. - Broadband Broadband jammers spread Gaussian noise across a whole band of audio frequencies, blocking legimate audio signals from easy receival. A basic radio transmitter is easily modifiable, by adding a noise generator, to successfully jam arbitrary frequency bands. Many other types of radio jammers exist, and their details are readily available on the World Wide Web. --[ 5 - Conclusion Radio is an extremely useful technology, which is at least as old as the atom. But we are only just beginning to exploit its full usefullness in even new and up and coming technology, and probably will do for the next few hundred years. As we've discovered, contrary to popular belief, employing the use of radio in electronic circuits isn't at all as complicated as one would think. Because of this, the use of radio and be both used and exploitfully abused -- only a few basic principles need to be understood to make use of this wonderful technology. Although the surface has only been scratched, and way forward is open.
You all want to know how its possible,some hear voices others hear voices and see things and others are just paronoid to the point of searching for a reason.I know what v2k broadcasters use to do voice to skull,i know what there set ups look like and i do have the right answers,trouble is no one reads these blogs and even if they did you wouldnt understand my exsplanations.sight triggers there sentences ,i have exsplained this before but no one cares,they use spotlight audio technology and still no one cares,they use ultrasound and infra red aswell as exchanging your subconcious attraction to colours for there words.No one cares as you all have your own ideas.I am right you are all wrong!its not goverments or spys or any other people asscociated along them paths,its normal(if you can call it that)people from everyday life,they could even be your neighbour.These people through using spotlight audio which creates ultrasound for directional use have found a way of manipulating the waves it creates by using the electromagnetic spectrum(uv)They exchange letters of the alphabet for subconcious colour having you spell what you see to start off a trigger.For instance if i had a lcd digital video camera with the letters aeioubl displayed on screen while filming a television set to recieve the recording you would have an endless repeat of what you veiwed(in other words a picture of the television you were recording would have another picture of a television and so on and so fourth,remember the letters aeioubl are projected on screen but first have to be projected from the lcd video recorder.this will reach the television as three mega pixel emissions which are red green and blue(primary colours)which you can see if you go up realy close to your television,infact i am going no further as i know no one will believe me or read this,i cannot tell you how its done without you losing intrest,it takes too long and is far more complicated than whats written above.so if antones intrested in how its done just leave me a comment as im realy fed up with bashing my head against a brick wall.Spotlight audio is the only processor in the world that can be bought legaly and used by members of the public.
v2k triggersOnce alphabetical ultra tones are converted into a subconcious trigger for BLACK alpha sight spells out what you see at the speed of thought.
ABALAAA 5 recorded mannerisms of AEIOU raising pitch each time
EBELEEE there are 26 points of sight which attract the vowel tone conversions
IBILIII they work the same as your vocal chords by vibrating clashes of pulsars
OBOLOOO creating air waves from within you to the point of sight triggering the first
UBULUUU constonants which form the word BLA .the CK is what the v2k
broadcasters use for triggering as a constinants are now a subconcious
action.The victim does not spell the word BLACK it only recognises the words BLA as the CK exchanges words for colour,these two letters are the basis of light speech.The continuous static replaces our subconcious actions as the victim searches for BLA the CK is in the mind before the vowels as a subconcious trigger,while on the other hand the v2k broadcaster uses static light to trigger
《俄罗斯报》等媒体报道,冷战期间,美苏两国曾展开激烈的“精神战”,希望利用心灵感应影响对方领导人和社会意识,从而达到“不战而胜”的目的。在冷战期间的苏联,克格勃成立了将近50个心理遥控研究所和一支极度保密的“精神特工队”,其财政投入高达数十亿卢布,成千上万的研究人员在力图开发这一神奇武器。尽管当时的研究工作并没有取得多大进展、相关工作在苏联解体之后也全部中断,但"精神特工队"在叶利钦担任总统期间屡建奇功。
在20世纪70年代,苏联克格勃还发展了心电影响系统(PIS),它被用于把士兵变成可设计的‘人类武器’。系统运用混合了高频无线电波和催眠术。根据前苏联总统戈尔巴乔夫的前安全顾问的尤里.马林(Yuri Malin)表示,心电影响系统计划是在回应由美国前总统卡特发起的类似计划。
在此基础上打造的俄联邦“精神特工队”则是心电影响技术的顶级高手。据这支队伍的鲍里斯.拉特尼科夫(Boris Ratnikov)将军透露,他们的任务就是深入国家领导人的精神或内心世界,保护本国领导人思维不受他人控制,并探知他国领导人在想些什么。
现年62岁的鲍里斯.拉特尼科夫少将曾是克格勃特工,两度进入阿富汗从事情报工作。苏联解体后,他担任过俄联邦警卫总局副局长、总统安全局总顾问、联邦安全局局长顾问等职,主要负责保护国家领导人的“精神安全”。拉特尼科夫说:“我们清楚,新国家的形成要经历一个‘病痛阶段’。和人一样,国家机体生病时也会非常脆弱。因此,需要使用任何可能的手段,保护一号人物的意识不受外来操控。我们基本上做到了这点。”
在负责本国领导人安全的同时,还时刻扫描美国领导人大脑在想什么。拉特尼科夫说:“我们能在美国总统及其亲信‘大脑中散步’,并提供了只有美国一号人物才知道的情报。”比如,上世纪90年代初期,“精神特工队”对美国驻俄新大使进行了“研究”,得出美国大使馆有心理影响设备的结论以及一些其他情况。在北约1999年3月24日对南联盟实施空中打击前两周,俄“精神特工”成功侵入美国国务卿奥尔布赖特的大脑,对她的潜意识进行了“扫描”。
心电武器可控制数百公里之外大脑
为应对苏联的挑衅,美国也开始大力研制心电武器来控制大脑思维,时间可以追溯到20世纪60年代。当时,美国政府发现,其驻莫斯科使馆遭到低强度电磁辐射的密集“轰炸”。接到报告后,白宫大惊,难道苏联政府在试图控制美国外交官的大脑不成?于是,白宫指示五角大楼迅即进行研究。
美国国防部于1965年秘密开展代号为“潘多拉工程”的研究。他们先后拿猴子和不知情的水手做试验,折腾了4年多,最后证实那些所谓的“莫斯科电波”只不过是在窃听,而非进行大脑控制。1970年,“潘多拉工程”寿终正寝。
但是,事情并未结束,有关研究仍然在秘密进行。上世纪90年代,一份为美国空军撰写的学术论文提到了一种武器创意:利用特殊信号将声音传送到人们的脑中。文中写道:“这种信号可以冒充上帝的旨意,警告敌人末日将临,赶快俯首投降。”
1994年,据说美国空军实验室通过实验,实现向人脑中输入语句,只是还有些误差。以此为基础,美国空军实验室在2002年取得“传音入密”的技术专利。一些美国媒体还认为,一旦研制出这种能控制大脑的武器,他们在无辜平民身上进行试验的可能性绝对不可排除。
据美国沃尔特.里德(Walter Reed)陆军研究所的约瑟夫.夏普博士(Joseph Sharp)称,美军能用调制后的雷达信号将声音直接传输入人类的听觉感官。当声音作为潜意识催眠命令的一种形式时,一个目标能被催眠术控制长达数年而不知情。
美国在向民众大脑灌输声音?
2007年1月14日,美国《华盛顿邮报》报道了关于精神控制受害者的故事。据悉,最近在互联网上出现了一个活跃的“俱乐部”,它的成员有一个共同之处,他们认为,政府使用一种秘密装置把声音输进他们的大脑,达到控制思想的目的。这一指控听上去疯狂而荒谬,但五角大楼确实在研究可以影响人思想的心电武器。
这个“俱乐部”的成员并非普通的受害者。这不是针对酗酒者、吸毒者或者性侵犯受害者的讨论小组。这些通过网络电话联系在一起的人都是思想控制的受害者—这些人相信他们是政府秘密计划的目标,夜以继日地受到跟踪,政府用秘密武器探究并控制他们的思想。这些人常常自称TI,即目标个体(Targeted Individual)的简称,他们常谈到V2K—一个正式军事用语,“voice to skull(向头脑传输声音)”的缩写,表示把声音输到人脑的武器。
一提到政府用武器控制公民的思想,许多人立刻会想到一个头戴锡箔帽子,试图阻挡干扰脑电波的疯子。有人认为这很有效,一位女士说她把锡箔藏衣服下,甚至帽子里,效果很好。还有人推荐一个叫Block EMF(阻挡电磁频率)的网站,说上面出售一系列镶嵌锡箔的衣物。还有伪装成普通棒球帽的锡箔帽。
直到最近,相信政府用声音操纵他们大脑的人们除了被嘲笑外,还处于社会孤立状态。现在,感谢互联网,他们在世界各地发现了几百个甚至几千个同病相怜的人。讨论电子骚扰和团体跟踪的网站在印度、日本、韩国、英国、俄罗斯等各个国家冒了出来。受害者们开始在华盛顿等大城市公开举行小组讨论。他们的热门话题包括如何抵制干扰,如何面对媒体和处理公共关系,甚至谈到用法律手段使思维控制非法化。
心电武器将比核武器更危险
据俄罗斯《真理报》8月15日报道,俄罗斯联邦监护服务一位少将表示,俄罗斯和其它几个国家正在利用特制的装置,将民众变成木讷呆板的人。
20年前,大众媒体首次提到了一个奇怪的词:心电武器。据悉,心电武器可以使目标人物生病和无法工作,使他们呼吸困难,精神恍惚,头脑模糊,笨头笨脑甚至呆若木鸡的样子。这类武器还可以控制人们的行为,严重削弱心智,严重时会导致肾衰竭和死亡。为此,一些人以为自己精神出现了问题,频频光顾精神病医院,可任何药物都不凑效。于是,他们纷纷指责心电武器,称自己为受害者。
随着技术和网络的发展,越来越多的人认识到心电武器作用人类真的很普遍。拉特尼科夫少将确信,在不到10年里,心电武器将比核武器和原子武器更加危险。目前,几位研究人员正在调查这一问题。
结果发现,美国研究人员正在研究心电作用、可控的心理系统、催眠术、神经语言学程序、电脑心理技术和生物回应刺激。他们寻找每一个控制人脑的机会。以色列研究人员也在进行类似的研究,以帮助人们展示潜在的新的自我控制、改变自我意识和提高精神力量的能力。更有甚者,他们研发秘密技术,来使人类行为程序化。
日本国防军事学院在研究使用超心理学现象,此现象可以由智力来控制。日本宗教心理学协会也在做同样的努力。韩国安全管制外交政策部正在使用特殊的振荡器做实验,以改变人类器官的功能。在巴基斯坦,特殊机构正使用特殊装置导致人类器官和心理系统功能紊乱,甚至导致死亡。西班牙在研究对人类器官和大脑影响的物理因素有哪些,以此研制装置来导致器官功能不良和精神异常。
拉特尼科夫表示,因不同的政治和军事目的,所有这些研究都是想找到新办法来作用人类心智,操纵广大民众,获取大众的行为意识。(王金元)
[责任编辑:sophiasun]
引文网址:http://tech.qq.com/a/20070828/000029.htm
二、俄总统保镖爆料多国研制“心理武器”
2007-09-04 08:45:20 来源:中国国防报
据俄媒体报道,俄联邦警卫局退役少将、前总统叶利钦的保镖鲍里斯.拉特尼科夫近日透露,俄、美、日、以等国都在研制能够随意摆布对手的“心理武器”,即通过心理作用,控制他人意志,指挥对方无意识地执行各种任务。
俄研制“幻觉炸弹”
拉特尼科夫说:“苏联自上世纪20年代开始,就已经在心理影响领域取得研究成果。20世纪80年代中期,苏联在基辅、列宁格勒、莫斯科等地共有20个研究人类心理作用的大型秘密中心,全部由克格勃负责。很多科学家研究这个课题。苏联解体后,所有这些中心都关闭了。”
拉特尼科夫承认,作为俄联邦警卫总局副局长,他本人没有参与制造这类“心理武器”。但他知道,在俄国内外,仍有人在从事类似工作。据悉,俄正在研制能产生幻觉形象的特种仪器,即“幻觉炸弹”。它能影响人的神志、知觉,迫使人混淆现实与虚幻,服从借助特种设备发出的指令。20世纪末,俄情报部门掌握了美国研制“幻觉武器”的研制情报,于是也开始秘密研制能对人产生心理生理影响的系统及其对抗系统。早在20世纪90年代中期,美国就成功进行了类似武器的非同寻常的试验,在虚拟战场上借助最新激光技术、全息技术制造目标幻觉形象,包括飞机、坦克、舰艇、整支战斗部队等形象,也可制造各种有影响的人物形象。
美搞“传音入密”武器
拉特尼科夫表示,美国也在积极研制“心理武器”。如美正在研究东方心理生理系统基础上,借助催眠术、神经语言学编程、计算机应用心理疗法、生物钟刺激等,从事心理影响方面的研究,目的是获得控制他人行为的能力。
据称,美沃尔特.里德陆军研究所的军事研究员在20世纪70年代曾通过微波尝试向人们的大脑发送指令。20世纪90年代,一份为美国空军撰写的学术论文提到了一种武器创意:利用声波将声音传送到人们的大脑。文中写道:“这种信号可以冒充上帝的旨意,警告敌人末日将临,赶快俯首投降。”1994年,美国空军实验室通过试验,已经能够向人脑中输入语句,尽管有些误差。以此为基础,美空军实验室在2002年取得“传音入密”的技术专利。
美空军声称,微波辐射除了产生热能外,并无其他影响。但美国家航空航天局首席科学家丹尼斯.布什内尔2001年在美国防工业协会发表演讲时表示,使用微波攻击人的大脑,是未来战争的一部分。他说:“这种研究工作极端敏感,不太可能在任何公开的文件中出现。”
开发“心理武器”的国家不少
目前,许多国家都在研制“心理武器”。以色列人研究的重点旨在通过自我调节、意识改变、挖掘人体潜能使人得到新的能力,主要为运动员、情报人员和特种分队服务;日本自卫队国家研究所和日本宗教心理研究所也在研究如何利用超常心理现象,特别是在情报侦察活动中;巴基斯坦为特工机关研制了能导致人体生理活动紊乱的仪器;西班牙军事情报局资助能够影响人体和大脑的各种生理因素的研究,试图制造能够扰乱人体机能、改变心理状态的设备;德国波恩大学和弗赖堡大学、英国伦敦大学和剑桥大学心理研究实验室也在进行相关研究。
拉特尼科夫认为,由于新技术的突破和网络普及,“心理武器”影响群体意识的威胁比以往还严重。他还预测,不过10年,“心理武器”由于可以控制数百万人的头脑,威胁要超过核武器。(王涛)
引文网址:http://www.chinamil.com.cn/site1/xwpdxw/2007-09/04/content_949013.htm
三、叶利钦保镖披露俄罗斯等研制“心理武器”内幕
2007年08月09日 15:48 来源:中国新闻网
中新网8月9日电 据俄罗斯媒体报道,俄联邦警卫局退役少将、前总统叶利钦的保镖鲍里斯.拉特尼科夫近日在接受记者采访时透露,俄罗斯和其他国家都曾研制能够随意摆布对手的“心理武器”,通过特定遥控装置,通过心理作用,控制他人意志,指挥对方无意识地执行各种任务。
早在20年前,媒体就曾出现过有关心理武器方面的报道,通常都是退役军官和相关专家透露,苏联、美国和其他国家研制了某种装置,能在数百公里之外对目标产生影响,使对方大脑思维混乱、行为异常、神志丧失,甚至死亡。事隔多年后,这类话题近日再度被人提起。拉特尼科夫在解释披露内幕的动机时说:“俄罗斯自上世纪20年代开始,就已经在心理影响领域取得研究成果。在上世纪80年代中期之前,在基辅、圣彼得堡、莫斯科等地共有20个研究人类心理作用的大型秘密中心,全部由克格勃负责。成千上万名科学家研究这个课题。苏联解体后,所有这些中心都关闭了。”拉特尼科夫认为,由于新技术的突破和网络普及,心理武器影响群体意识的威胁比以往还严重,应当让民众和当局了解这些信息。他还预测,再过不到10年,‘心理武器’由于可以控制数百万人的头脑,威胁要超过核武器和原子武器。
拉特尼科夫承认,他作为俄联邦警卫总局副局长,本人没有参与制造这类“心理武器”。但他知道,在俄罗斯国内外,都有人在从事类似工作。当年参与“心理武器”制造的人多数已经去世了,一些人到了国外,其他人藏身私人中心和诊所之内。他指出,维克多.康德巴院士和他的儿子还在圣彼得堡继续从事这项研究,新西伯利亚的弗拉伊利.卡兹纳切耶夫院士也在研究这个问题。
拉特尼科夫表示,其他国家也在积极研制“心理武器”,如美国正在东方心理生理系统基础上,借助催眠术、神经语言学编程、计算机应用心理疗法、生物钟刺激(改变人体细胞状态)等,从事心理影响方面的研究,目的是获得控制他人行为的能力;以色列人研究的重点旨在通过自我调节、意识改变、挖掘人体潜能使人得到新的能力,主要为运动员、情报人员和特种分队服务;日本自卫队国家研究所和日本宗教心理研究所也在研究如何利用超常心理现象,特别是在情报侦察活动中;巴基斯坦为特工机关研制了能导致人体生理活动紊乱的仪器;西班牙军事
情报局资助能够影响人体和大脑的各种生理因素的研究,试图制造能够扰乱人体机能、改变心理状态的设备;德国波恩大学和弗赖堡大学,英国伦敦大学和剑桥大学
What's the whole story behind electronic Mind Control? Is it to just torture someone unnoticed? Oris it used for something else? I am being attacked as I type this andthe attack got me thinking. I remember a television show that talkedabout the Manchurian Candidate and this makes me wonder. Maybe themilitary is using this to create a Manchurian Candidate because thethoughts are very repetitive and consistent with each attack. I'llhave the phrase, so far so good it's all in the hood. What was thatnoise, where did they come from. And so forth, be repeated in my mindover and over, and I believe this is a way to induce fear (also withthe induced heart rate and pressure in the skull). My belief is thatthere is a super computer that records everything the victim does andthen that's saved onto another super computer, which explains why therepetitiveness is there. I keep getting the thought (implanted in mymind) no one's going to believe you James. I wonder why that thoughtkeeps popping in my head? Hmm? The CIA was supposedly done withtrying to create a Manchurian Candidate, but they are liars and arestill up to no good. This was typed a while back but posted on herefor you viewing pleasure. What do you think?